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ABSTRACT
The project reviews how network analysis concepts can be
used to analyze and characterize team, and individual be-
haviors in team sports. We consider the case of Basketball
in particular, and build up on analysis concepts from past
work, and provide a user friendly analysis framework; which
makes use of newly available SportVU logs from NBA, and
play by play data for games.

1. INTRODUCTION
Statistical analysis of team sports in general has always

focused on individual player performance, or team statistics
as a unit. There has been very little effort in the area of
capturing, and characterizing team interactions. However,
recently, there have been efforts to analyze team sports such
as Basketball, Soccer etc, by mapping teams and their inter-
actions to networks, and the performance of players being
impacted by their positions in the network. Our goal is to
map a team’s interaction during basketball to a directed net-
work, and calculate metrics and measures in order to analyze
team and individual performances.

Analyzing group interactions is a major application area
of network analysis. A good network representation of the
group structure should highlight the group interactions, and
function of individuals. We can extend this idea to team
sports. Teams can be defined as groups of individuals work-
ing collaboratively and in a coordinated manner towards a
common goal be it winning a game, increasing productivity,
or increasing a common good [4].

Basketball games are a series of interactions over the en-
tire game period. Players work together towards a unified
goal of moving the ball into the basket, while trying to re-
sist the opposition to do so. Our project is a strict analysis
of offensive plays only. For each game, we model the inter-
actions between a team in isolation, and calculate network
measures over the resultant graph.

To evaluate basketball teams as networks, we picked 3
OSU college basketball games and annotated the interac-
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tions between OSU players for their offensive plays. This
was done to see if the measures we include in our framework
for analysis actually show results consistent with what’s ob-
served in the game.

The main contribution of this project is a data processing
framework that generates offensive play networks from ‘NBA
SportVU logs’, and ‘play-by-play logs’. This enables users
to analyze performance of any team for a given match, if
NBA logs for it are available.

We also provide an interactive UI for users to pick games
for analysis. The interface provides different network spe-
cific, and node specific measures. The users can rearrange
the node layout to observe structural patterns of interest.

2. PROBLEM STATEMENT
The first part of the problem can be formulated as con-

struction of a weight-ed directed graph G(V, E) from player
position tracking logs, and play-by-play logs, where each
node v in V corresponds to a player, possible game out-
comes, or different starts of offensive plays. Presence of
an edge between nodes indicates the interaction between
them, between players it denotes passes, and nodes from
start nodes to player nodes show which player started that
play. Edges from player nodes to end nodes show the end of
offensive plays from scoring attempts, or loss of possession
because of any reason. The edges between any two nodes are
weighted according to the number of interactions through-
out the game, higher the count, higher the edge weight.

The network analysis problem can be formulated as an
adjusted calculation of common network/node specific mea-
sures, and analyzing them to come up with insights about
team strategies, player performance, and player roles.

3. METHODOLOGY

3.1 Network Construction
Games observed and analyzed, could be categorised into

two types, College basketball games, and NBA games. Graphs
for the NBA games are created using the SportsVU logs and
Play by Play logs, while graphs for the college games are cre-
ated using annotated data.

3.1.1 SportVU logs
SportVU[1] utilizes a six-camera system installed in bas-

ketball arenas to track the real-time positions of players and
the ball 25 times per second. Thus, the granularity of this
data is every 0.04 seconds. Time frames are ignored, where
information about the position of the ball is absent. Also,



due to the existence of multiple positional information of
players and ball at an instance of time, only the first ball
and player positions in that time instant is considered for
simplicity.

3.1.2 Play by play logs
Play by play data, for each NBA game, is available, on

the NBA stats site. However, the granularity of this data
is in seconds, unlike the SportsVU logs. If play by play
events occur in time t, they are assumed to occur in the
time window t + 1, t, as time counts down in basketball.

Some of the fields for play by play events are

• GAME ID: Game id stored for the match. Used to
extract the relevant Sports VU logs.

• EVENTMSGTYPE: Event type. Eg: A value of 10
indicates jump-ball, 1 indicates a successful shot, 2
indicates a miss etc.

• EVENTMSGACTIONTYPE: Sub-event type. Eg: For
event freethrows, the value of EVENTMSGTYPE is 3.
The first free throw out of 2 free throws is categorized
further by giving a value of 11 to EVENTMSGAC-
TIONTYPE.

• PERIOD: Indicates the quarter.

• HOMEDESCRIPTION: Description of the event, if
the event occurred with respect to the home team.

• VISITORDESCRIPTION: Description of the event, if
the event occurred with respect to the away team.

3.1.3 NBA network construction

Algorithm 1 Play by play network construction algorithm

1: procedure Play by play Constructor( )
2: Convert time to seconds in play by play logs.
3: Extract player and ball position once for every time in-

stant, from SportsVU logs.
4: Extract team ids and team information.
5: Extract events from play by play data.
6: Determine possession from each event, by calling

POSESSION DETERMINER(event e, team id home,
team id away)

7: Insert possession events for start and end of quarter, if
not present.

8: Divide play by play possession events, into possession
time frames, where every frame indicates possession of
ball by one team. This creates a sequential path of nodes
for the ball from start of play to players and finally end
of play.

9: Now for every play by play frame f, perform MO-
MENT INTERPOLATOR(f). Append the resultant list
of nodes to global list NODES.

10: end procedure

Nodes are defined to be of three types

• Start of play: Would comprise of possible start of play
event/nodes.

– 0 - inbound for home, when possession is gained
by the home team under other circumstances, be-
sides steals and rebounds

– 1 - inbound for away, when possession is gained
by the home team under other circumstances, be-
sides steals and rebounds

– -4 - steal, when the ball is stolen

– -5 - rebound, when a rebound event occurs

• End of play: Would comprise of possible end of play
event/nodes

– -2 - successful shot

– -3 - missed shot

– -6 - turnovers

– -1 - fouls, violations, other events where play ends,
such as ball going out

• Player nodes: Would comprise of player ids

Algorithm 2 Possession determining algorithm for each
event
1: procedure Possession Determiner(event e, team id

home, team id away)
2: Determine type of event using EVENTMSGTYPE and

EVENTMSGACTIONTYPE
3: If event == jumpball, chain of nodes are [0, player1’s id,

player2’s id], where player1 and player2 are the players
who won the jumpball, and then got the ball respec-
tively.

4: If event == successful shot or event ==
free throws (2 out of 2), chain of nodes are [player1’s
id(optional), player2’s id, -2, inbound node], where
player1 provides the assist, and player2 took the shot,
inbound node is 0 if the away team took the shot, and
vice versa. (Here 2 out of 2 implies the second free
throw out of 2)

5: If event == rebound, chain of nodes are [-5, player1’s
id], where player1’s id is the player id who got the re-
bound.

6: If event == fouls or event == violations, chain of
nodes are [-1, inbound], where inbound node is 0, if away
team committed the foul/violation, and vice versa.

7: If event == turnovers, chain of nodes are [player1’s id,
-6, -4, player2’s id], as steals occur with turnovers.
However, depending on the sub-event type, this could
change to [player1’s id, -6, inbound node], if turnover
happened due to a reason besides a steal, where inbound
node is 1, if home team lost possession, and vice versa.

8: end procedure

Algorithm 3 Moments interpolation algorithm

1: procedure Moment Interpolator(frame f)
2: Determine closest player to the ball at every time instant

in frame f, from SportsVU logs.
3: Consider only series of time instants, where closest

player distance is less than or equal to 1.1, and clos-
est player id is the same for atleast 5 frames, i.e, for a
span of 0.20 seconds.

4: Missing players for frame f are interpolated from the the
above series of time instants, in order to create a proper
sequential path of the ball in time frame f.

5: end procedure



Algorithm 4 Final graph construction algorithm

1: procedure Nba Graph Constructor(NODES)
2: List of start nodes = [0, 1, -4, -5]

List of end nodes = [-2, -3, -6, -1]
3: for each consequent pair of nodes (n1, n2)) in NODES

if node n1 in end nodes, skip this pair.
if edge exists from node n1 to n2, increase weight of
the edge by 1, else add edge from node n1 to n2 in the
directed graph G.

4: end for
5: end procedure

3.1.4 College basketball annotated logs
We also aimed to analyze OSU college basketball games

in this season, and compare and contrast with NBA games.
Due to difficulty of retrieving game footage, only three games
were annotated. The Ohio State data was captured in the
form of 3 games. In an attempt to obtain an idea of when
the Ohio State basketball team was playing at their best
and at their worst, data from their two biggest wins of the
year, against the University of Kentucky and the University
of Iowa, were identified, as well as one of their worst losses, a
19-point home loss to Michigan State. The data from these
games was manually tracked, and actions such as inbound
start of play, successful shots, missed shots, turnovers etc,
were noted.

3.1.5 College basketball network construction
A networkX graph G was generated for the three college

games, based on the fact that, end of play nodes such as suc-
cessful shots etc cannot have outgoing edges, and incoming
play of nodes can have only outgoing edges.

3.2 Network Measures

3.2.1 Entropy
In network science, entropy is the measure of the random-

ness of a graph. In the context of our modeled graph, en-
tropy refers to the unpredictability of ball movement amongst
players or towards different outcomes. We exclude the start
of play links from entropy calculations, as generally they are
high weighted edges to certain fixed players, and do not indi-
cate anything about the ball movement during the play. We
use Shannon’s entropy[3] to calculate the unpredictability of
ball movements between different players and outcomes.

S = −
∑
pεP

plog(p) (1)

3.2.2 Degree Centrality
Degree centrality is a measure of how “central” each node

is the graph, or in terms of a basketball team, how often the
ball flows through a particular player. Normalized degree
centrality was calculated for each player node by normalizing
the degree of each node against the sum total of degree of
all nodes. The relative distributions of player degrees were
then calculated across the graph. For a weighted graph with
weights summing to 1 and a vertex of maximal degree the
degree centrality is then:

DC = −
∑
vεV

(deg(v∗)− deg(v)/(|V | − 1)) (2)

where v∗ is the node with maximum degree centrality.

3.2.3 Clustering Coefficient
Clustering coefficient measures the extent to which the

nodes in the graph tend to cluster. The local clustering coef-
ficient of a node in a graph quantifies how close its neighbors
are to being a clique (complete graph). We first convert the
directed weighted graph to an undirected graph, and then
threshold the edges at a certain fraction which is a user pa-
rameter. Thresholding essentially would retain only the top
specified fraction of outgoing edges from each node. This
is required as most of the player nodes would be connected
to each other by the end of the game, and the edge weights
do not play a role in calculation of the clustering coefficient
otherwise.

3.2.4 Uphill Downhill Flux
We use the metric developed by Fewell et al [2] to mea-

sure a teams ability to move the ball towards their better
shooters. A high positive flux shows that the players con-
sistently try to move the ball into the hands of their players
with higher shot hit rate. Flux can be calculated as.

F =
∑
i6=j

pij(xj − xi) (3)

where pij denotes the transition probability from player i to
player j, and xi denotes the shot rate of player i.

3.3 Visualization and Analysis Interface
We preprocess all generated graphs to calculate the net-

work and node specific measures. The measures and network
structure is dumped in json files which is used for visualiza-
tion, and analysis of the games on a browser based interface.
The user can select a game from list of available games. The
interface provides a clean, interactive visualization of the of-
fensive plays for selected game. The team/network specific
stats are displayed in one pane. Player specific measures
can be seen by clicking on the node corresponding to specific
player. The nodes are labeled with player names, and the
edge thickness, and opacity encode the edge weight. Users
can move around nodes to see occluded edges, or just ex-
plore patterns. Figure 1 shows the interface with a game,
and a particular player selected.

4. EXPERIMENTAL RESULTS
The above mentioned data is used to construct graphs,

one per team, and obtain measures such as entropy and
degree centrality from these graphs. These values would be
used as a baseline to compare with the Ohio State menâĂŹs
basketball team.

4.1 Entropy

4.1.1 ENTROPY VALUES
In the two games that were studied, the Ohio State team

had an entropy value of 5.568 and 5.879, respectively. Com-
pared with the baseline values studied in the NBA dataset,
these values were much higher; the highest entropy value
from the NBA dataset was around 3.2.

4.1.2 OHIO STATE WINS
Ohio State is a team that employs about a 9-man rota-

tion (at most) and does not have a traditional ”go-to-scorer”



Figure 1: Screenshot of Visualization and Analysis Interface

Table 1: Entropy values of observed teams
Team Entropy Value in observed game

Washington Wizards 5.423
Miami Heat 5.457

Toronto Raptors 5.403
Chicago Bulls 5.647

Los Angeles Lakers 5.592
Boston Celtics 5.322

Charlotte Hornets 5.291
Cleveland Cavaliers 5.799

Ohio State vs. Kentucky 5.529
Ohio State vs. Michigan State 5.350

Ohio State vs. Iowa 5.279

that many collegiate teams employ. In addition, many of
the players that play in the rotation - Marc Loving, JaeSean
Tate, JaQuan Lyle, Keita Bates-Diop, etc., are not one-
dimensional players that are specialized in one area, rather
their skills are spread out, and are all capable of shooting
from long distance and get to the basket (albeit not neces-
sarily at an exceptional rate). Due to the fact that the team
employs a large rotation, it does not have a primary scorer
that the offense is facilitated through, and that the players
are not specialized in their skills, it makes sense that the
team’s entropy would be high.

What is more interesting is whether success can be at-
tributed to this high entropy value - in both cases where
Ohio State has won, they had high entropy values, and got
strong play from players outside of their starting 5. A high
entropy value implies that they were attacking the defense
with a variety of different shots and moves, and that they
kept the defense guessing. With that being said, it may
sometimes imply that the team cannot find a rhythm doing

any one set play, so they resort to shuffling different players
in and out to find some sort of offensive rhythm. From this
data, however, it seems that success generally coincides with
higher entropy for this team.

4.1.3 OHIO STATE LOSS
In the large loss that was explored against Michigan State,

the entropy was calculated to be 5.71, sandwiched between
the values of the two losses. This shows that entropy is
not necessarily correlated with wins or losses with this OSU
team and the high entropy values can be attributed to hav-
ing many players that contribute at roughly the same clip
together rather than a few individuals. In this particular
game, the entropy value could be attributed to Ohio State
shuffling players in and out in an attempt to jump-start their
offense.

4.1.4 COMPARISON WITH NBA
The values for entropy were almost uniform throughout



Table 2: Highest Degree centrality observed in games
Team Highest Observed Degree Centrality Player Name

Washington Wizards .180 John Wall
Miami Heat .149 Chris Bosh

Toronto Raptors .214 Kyle Lowry
Chicago Bulls .114 Jimmy Butler

Los Angeles Lakers .146 Jordan Clarkson
Boston Celtics .102 Isaiah Thomas

Charlotte Hornets .186 Kemba Walker
Cleveland Cavaliers .122 Kyrie Irving

Ohio State vs. Kentucky .173 JaQuan Lyle
Ohio State vs. Michigan State .244 JaQuan Lyle

Ohio State vs. Iowa .187 Marc Loving

the NBA data-set as well, at values that were nearly the
same as the ones calculated for the Ohio State games, which
warrants our previous assumption.

4.2 Degree Centrality

4.2.1 OHIO STATE WINS
This Ohio State team is traditionally a team that spreads

the usage of the ball around and struggled to find a primary
ball-handler for much of the season, so it would make sense
that the degree centralities of the players would not vary
much between players. In the first game that happened,
the Kentucky game, this was the case; JaQuan Lyle led the
team with a degree centrality of .16847 but there were 5
OSU players with a degree centrality greater than .1. This
suggests that the OSU team was able to keep the Kentucky
team off-balance by spreading the ball around, as well as
keeping the ball moving through a variety of people.

Similarly, in the Iowa game the team had 5 players with
a .1 degree centrality or higher, although Marc Loving, who
played a brilliant game scoring 25 points, led the team with
a .18 degree centrality, while JaQuan Lyle, who was right
behind him with a .1648 degree centrality, did not score.
This shows that a player can have scored a lot of points but
not necessarily have a huge hand in developing the shots
themselves, and vice-versa; if a player has scored a ton of
points but has a very low degree centrality, this shows that
their points were more a result of his teammates facilitating
offense for that person rather than from that player facil-
itating for themselves. From this, we can see that degree
centrality can be a powerful tool to actually measure how
much a player does for their offense, and a more accurate
metric than simply points scored. One more important point
is that in both sets, Kam Williams, who plays off the bench,
had the 5th highest degree centrality. This is significant in
that the NBA data neglected bench players, while for a team
like OSU, it is important to look at the bench as they are a
key in how the team operates.

4.2.2 OHIO STATE LOSS
In the game where OSU lost decisively, JaQuan Lyle again

led the team in degree centrality, but with the highest ob-
served value seen, at .234. The next closest player was Marc
Loving at .169, and Keita Bates-Diop was the only other
OSU player with a degree centrality of over .1 at .13. In
contrast to the games they won where they had 5 players
with a degree centrality of over .1, they only had 3. This

could suggest that rather than spreading the ball around
evenly in the Michigan State game, the ball was primarily
handled by a few players, and also suggests that Ohio State
performs better against teams when they can evenly spread
the ball around all the players that are on the court, instead
of keeping the ball in the hands of just a couple players.
More games where OSU lost would need to be observed,
however, as Michigan State is a very good defensive team
and may have forced OSU to keep the ball in the hands of
their inexperienced point guard.

4.2.3 COMPARISON WITH NBA
JaQuan Lyle’s observed involvement in the offense through

degree centrality was further evidenced through the NBA
dataset, where he had a higher degree-centrality value than
all NBA player’s, with Kyle Lowry of the Raptors being the
closest at .214. While part of the difference is due to the
differences between the college and pro-games - in the pro
game the team plays more players, and almost no players
play the entire game, capping the degree centrality, Lyle’s
high degree centrality is an evidence of the long-leash he was
given by coach Thad Matta as a Freshman, and as the only
traditional Point Guard on the team, it is not a stretch to
say that the Ohio State team will go as JaQuan Lyle goes
in the future.

4.3 Clustering Coefficient

4.3.1 OHIO STATE WINS
In both games that OSU won, the player with the highest

clustering coefficient was Trevor Thompson, the sophomore
transfer. This shows that Thompson would never try to
generate offense in isolation, but only as a result of a team-
mate, or dishing it off to another teammate. General intu-
ition would lead one to believe that this is a good thing; the
player never tries to do too much, and is always in connection
with his teammates in terms of ball-movement. As a player
that had just transferred schools, it is also encouraging that
he was able to mesh so quickly with his new teammates, and
work so well within the post. In terms of being able to find
something concrete about his impact, this metric could be
used in conjunction with another, such as offensive usage or
FG%, to find out how effective he is actually being in his
touches.

If these other metrics are in line with the clustering co-
efficient, it may be a sign that the team should work more
to operate the offense through that player. What is also in-



Table 3: Highest observed Clustering Coefficient in games
Team Highest Observed Clustering Coefficient

Washington Wizards .800 (Otto Porter, Garrett Temple)
Miami Heat .667 (Tyler Johnson)

Toronto Raptors .833 (DeMar Derozan, Jonas Valanciunas)
Chicago Bulls .7 (Taj Gibson)

Los Angeles Lakers .833 (Bass, Clarkson, Young)
Boston Celtics .667 (Isaiah Thomas, Avery Bradley)

Charlotte Hornets .667 (Troy Daniels, Tyler Hansbrough)
Cleveland Cavaliers .7 (Matthew Dellavedova, Timofey Mozgov)

Ohio State vs. Kentucky .881 (Trevor Thompson)
Ohio State vs. Michigan State .929 (Mickey Mitchell)

Ohio State vs. Iowa .842 (Trevor Thompson)

teresting here is that JaQuan Lyle, the talented freshman,
had among the lowest clustering coefficients on the team for
both games, showing that he was not always in connection
with his teammates. However, his team won both games
against tough opponents in which he did this, perhaps sug-
gesting that Lyle is at his best when he is either trying to
create offense for himself, or not touching the ball, rather
than facilitating for others.

4.3.2 OHIO STATE LOSS
In looking at the clustering coefficients for the loss to

Michigan State, freshman Mickey Mitchell led the team with
a .9286 clustering coefficient, which makes sense due to the
newcomer’s passing acumen and inability to score. In con-
trast to the two games that Ohio State lost, Trevor Thomp-
son was 5th on the team in clustering coefficient value for
this game. This suggests that Thompson wasn’t nearly as
connected with his teammates in this game as he was in the
other two, and thus implies that OSU has more success when
they are able to operate through the post with Thompson;
even if he wasn’t scoring, just allowing him to play in the
post and kick the ball back out to teammates proved suc-
cessful in the two games they won, but was not on display
here.

4.3.3 COMPARISON WITH NBA
John Wall, who plays for the Washington Wizards had 24

pts and 13 assists, in the game we observed. However, he’s
only 5th on team in clustering coefficient. Thus, assists do
not imply a lot of ball movement from the player. Ignoring
the game, Wall is still 6th in his team, in terms of clustering
coefficients. However, the NBA dataset was a bit hard to
relate to the college basketball data, as the clustering co-
efficients were very similar between games, and tended to
produce results that said that the players that played very
little had the highest clustering coefficient numbers (per-
haps buoyed by them only interacting with a few players,
and being very close to those players).

4.4 Uphill-Downhill Flux

4.4.1 OHIO STATE GAMES
What is interesting in the analysis of the Ohio State data

set was the wide range of values of flux seen in the three
games observed. In the loss to Michigan State, the flux
was the highest, and in perhaps Ohio State’s biggest win of
the season, Kentucky, the flux was the lowest. This would

Table 4: Uphill-Downhill flux observed for teams in
games

Washington Wizards -.203
Miami Heat -.235

Toronto Raptors -.092
Chicago Bulls -.984

Los Angeles Lakers -.627
Boston Celtics .931

Charlotte Hornets -.454
Cleveland Cavaliers -.246

Ohio State vs. Kentucky .278
Ohio State vs. Michigan State -.946

Ohio State vs. Iowa -.402

suggest that Ohio State plays better when they keep the flux
down, or, in other words, they are not trying to get the ball
in one player’s hands, but rather spreading it evenly. Ohio
State is a young team with a group of talented players, but
no dominant scorer (having a dominant scorer is a typical
staple of the recent Ohio State basketball teams). Since no
Ohio State player is great at creating their own shot and
proverbially ”taking over a game” their best chance to be
successful is to get everyone in the offense involved, and
use this to keep the defense off-balance, and ultimately get
better shots. Looking forward, it will be interesting to see
if OSU remains successful if they keep their flux low - the
team will retain a majority of the nucleus that composed
the team’s rotation, but with so many talented players, one
player may break away from the pack and become the“go-to”
option on the team, and if this is the case, the interpretation
of uphill-downhill flux for this team may change

4.4.2 COMPARISON WITH NBA
While passing around the ball improves the plays appear

to be an obvious statement, in the NBA dataset, the team
with the lowest uphill-downhill flux (Boston) lost their game
at home to the lowly Brooklyn Nets. Conversely, the team
with the highest, Chicago, won convincingly. This sug-
gests that uphill-downhill flux is something that needs to
be looked at in a case-by-case basis - certain teams that
are built around one scorer (i.e. Jimmy Butler and the
Bulls) are better served moving the ball into that player’s
hands, while others, like Ohio State, are the opposite. One
team that had a huge difference in calculated uphill-downhill
flux, was the Boston Celtics, who had a value that was



much higher than any other team, and thus had a much
lower uphill-downhill flux. This value makes sense as Brad
Stevens has been known to constantly rotate players in-and-
out of their rotation, and opt to spread the ball around
evenly, as all 5 starters and other players in the rotation
have the ability to score. This asserts the validity of the
measure, as it matches exactly what the intuition of such
a measure would be. Chicago Bulls had the highest (most
negative) uphill/downhill flux with 4 players within 16 and
23 points.Thus, balanced scoring does not imply a low up-
hill/downhill flux. Los Angeles Lakers had the 2nd highest
uphill/downhill flux without Kobe playing, which shows that
they are still sticking to their old habits.

5. RELATION TO STATE OF THE ART
There has only been one prior work by Fewell et al. [2]

in this area which can be compared to ours. We couldn’t
compare the set of games they’ve included in their analysis
as NBA only made the SportVU logs available starting in
2014, hence the logs for games in that paper aren’t avail-
able. There are certain clear advantages of our work over
the existing work.

• Generic Framework for Analysis: We have devel-
oped a generic end to end framework for analysis of
the NBA games which only needs the logs provided by
NBA, and doesn’t need the taxing manual annotation
of the games as done in the existing works.

• Differential Edge Weighing : We have the game,
and shot clock timing information available which can
be used to grade the importance of passes, and shots,
and assign the edge weights accordingly instead of con-
sidering every interaction as equal. Along with these,
other factors such as the opposition’s defense, position
of the player on the court at each moment can also be
factored in weighing the interactions. Constructing a
good edge weight model would require in-depth anal-
ysis of quite a few games, and insights from domain
experts.

• Intuitive UI Tool for Analysis: Our framework
provides an intuitive UI for analyzing games, and study-
ing different node/network specific measures for se-
lected games.

6. CONCLUSION
From our observations, we can conclude that though en-

tropy seems to have no discernible effect on wins or losses
for the Buckeyes, there are some correlations that can be
seen from degree centrality and clustering coefficient. While
the conclusion from degree centrality is not groundbreaking
- many coaches aim for great ball movement and “getting
everyone a touch” to make sure the defense doesn’t key in
on one of their players - it does reinforce that for a team like
Ohio State, that does not possess a star player, they need to
rely on spreading the ball around and keeping the opponents
off-balance.

Clustering coefficient brings up an interesting discussion
on Trevor Thompson - a relatively unheralded high-school
prospect who has smooth moves from the post and runs the
floor very well, but that was generally one of the steadier
contributors for this Ohio State team, albeit in relatively

low volume this season. From the results of the wins and
the loss, it seems that the team generally does better when
Thompson is getting more opportunities to touch the ball
and facilitate offense - on a team with quite a few developing
young talents that each want the ball in their hands quite
a bit (Lyle, Loving, Bates-Diop, Tate), can they find a way
to incorporate Thompson more? Along with this, if they
do, will he be able to continually produce at the rate he is
at a higher volume? If he is able to continue his play at a
higher volume, Ohio State could have a low-post offensive
presence that they’ve lacked in prior years, and a guy that
could really help open up the perimeter for a crowded OSU
backcourt.

7. FUTURE WORK
The most obvious direction ahead is implementation of

a good edge weighing model, and more analysis measures.
One important distinction that needs to be made is that the
datasets from the NBA and Ohio State basketball games are
not constructed in the same fashion. The NBA data keeps
track of moment-by-moment data, captured at .04 second
intervals, keeps track of the time at each moment, and has
specifically what kind of pass each player utilizes. In con-
structing the Ohio State graph, the graph was generated
manually, through watching actual game footage and keep-
ing track of passes and shots. Due to the volume of time
needed to construct one graph, the time aspect and the spe-
cific type of pass was ignored, due to the amount of time
needed to construct a graph. Thus, none of the calculated
measures take into account time.

In addition, the NBA and college games are different in
some senses, NBA teams traditionally utilize more players,
and is a longer game than college. Despite this, it still was
able to serve as an effective baseline. If this study were
to be taken more in depth, it would serve the study better
to compare the Ohio State data to other college basketball
data, perhaps from prior Ohio State teams. We also hope
to analyze the data further, while taking advantages of the
notion of space and time, which provides a better notion of
path speed and length.
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